

Statistics formulas for STA 2023 and STA 2122

Z-Score for Sample Values and Population Values

$$Z = \frac{x - \bar{x}}{s} \qquad \qquad Z = \frac{X - \mu}{\sigma}$$

Standard Deviation for Sample Values and Population Values

Sample Standard Deviation, $s = \sqrt{\frac{\Sigma(x - \bar{x})^2}{n-1}}$ Population Standard Deviation, $\sigma = \sqrt{\frac{\sum (x - \mu)^2}{N}}$

Sampling Distribution for a Sample Proportion

$\hat{p} = \frac{x}{n}$	$\mu_{\widehat{p}}=p$	$\sigma_{\widehat{p}} = \sqrt{\frac{p(1-p)}{n}}$	$Z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}}$
Central Limit Theorem Conditions $(\hat{p} \sim normal)$	1. SRS	 np ≥ 10; and n(1- p) ≥ 10 	3. N≥10n

Sampling Distribution for a Sample Mean

$\bar{x} = \frac{\Sigma x}{n}$	$\mu_{ar{x}} = \mu$	$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$	$Z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$
Central Limit Theorem Conditions ($\bar{x} \sim normal$)	1. SRS	2. n ≥ 30 or x ~ normal	

Confidence Intervals and Test Statistics for Hypothesis Testing

CI for μ, σ known	CI for μ, σ unknown	CI for p
$C.I. = \bar{x} \pm Z \frac{\sigma}{\sqrt{n}}$	$C.l. = \bar{x} \pm t \frac{s}{\sqrt{n}}$	C.I. = $\hat{p} \pm Z_c \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
HT for μ, σ known	HT for μ , σ unknown	HT for p
$Z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$	$t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}}$	$Z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}}$

Confidence Interval Critical Values of Z

Confidence	Z _c	Confidence	Z _c
90%	1.645	98%	2.33
95%	1.96	99%	2.576 or 2.58

Regression line equation y = ax + b, a = slope of the line, b = the y-intercept, residual= $y - \hat{y}$; $r = correlation coefficient <math>(-1 \le r \le 1)$, $r^2 = coefficient$ of determination

Binomial Distribution: $\mu = np$; $\sigma = \sqrt{np(1-p)}$;

Discrete Probability Distribution: $\mu = \Sigma[X \cdot P(X)]; \sigma = \sqrt{\sum [(x-\mu)^2 \cdot p(x)]}$

Probability: $nCr = \frac{n!}{r!(n-r)!}$; $nPr = \frac{n!}{(n-r)!}$; $P(A \cup B) = P(A) + P(B) - P(A \cap B)$; $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$; $P(A) + P(A^{C}) = 1$

Texas Instruments Calculator Shortcuts and Formulas

Descriptive Statistics: (Mean, Standard Deviation, Minimum, Q1, Median, Maximum):

- insert data in calculator STAT → Edit
- Then: STAT → CALC → 1: 1-Vars Stat
- To clear a list: STAT → Edit → go up to the list name (L1, L2, L3...)--> CLEAR → Enter
- Restore missing list name: STAT→ Edit → go up→ 2nd Del→ type the name→ enter

Linear Regression:

- Correlation coefficient (one-time set up): 2nd 0 → DiagnosticOn→Enter→ Enter
- Insert values of X into List1 and values of Y into List2→ STAT→ Edit
- Then: STAT \rightarrow CALC \rightarrow 4: LinReg(ax + b) \rightarrow 2nd \rightarrow 1 \rightarrow comma \rightarrow 2nd \rightarrow 2 \rightarrow enter
- Or: STAT \rightarrow CALC \rightarrow 8: linReg (a + bx) \rightarrow 2nd \rightarrow comma \rightarrow 2nd \rightarrow 2 \rightarrow enter

Intervals:

- Stat → TESTS → 1: Z-Test
- Stat → TESTS → 2:T:Test
- STAT→ TESTS→ 4:2-SampT-Test

- STAT→ TESTS→ 5: 1propZ-Test
- <u>STAT</u>→ <u>TESTS</u>→ <u>A: 1propZ-Interval</u>

Hypothesis Test:

- STAT→ TESTS→ 1: Z-test
- STAT→ TESTS→ 2: T-Test
- STAT→ TESTS→ 4: 2-SampT-Test
- STAT→ TESTS→ 5: 1propZ-Test

Distributions:

- 2nd→ VARS→ 2: normalcdf (left bound, right bound, Mean, Standard Deviation)
- $2^{nd} \rightarrow VARS \rightarrow 3$: invNorm (area to the left, Mean, Standard Deviation)
- 2nd → VARS → 5: tcdf (left bound, right bound, degrees of freedom)
- 2nd→ VARS→ 0: binomialpdf(number of trials, probability of success, number of successes)